
NAG Fortran Library Routine Document

D03RBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03RBF integrates a system of linear or nonlinear, time-dependent partial differential equations (PDEs) in
two space dimensions on a rectilinear domain. The method of lines is employed to reduce the PDEs to a
system of ordinary differential equations (ODEs) which are solved using a backward differentiation
formula (BDF) method. The resulting system of nonlinear equations is solved using a modified Newton
method and a Bi-CGSTAB iterative linear solver with ILU preconditioning. Local uniform grid refinement
is used to improve the accuracy of the solution. D03RBF originates from the VLUGR2 package (Blom
and Verwer (1993) and Blom et al. (1996)).

2 Specification

SUBROUTINE D03RBF(NPDE, TS, TOUT, DT, TOLS, TOLT, INIDOM, PDEDEF,
1 BNDARY, PDEIV, MONITR, OPTI, OPTR, RWK, LENRWK, IWK,
2 LENIWK, LWK, LENLWK, ITRACE, IND, IFAIL)

INTEGER NPDE, OPTI(4), LENRWK, IWK(LENIWK), LENIWK, LENLWK,
1 ITRACE, IND, IFAIL
real TS, TOUT, DT(3), TOLS, TOLT, OPTR(3,NPDE), RWK(LENRWK)
LOGICAL LWK(LENLWK)
EXTERNAL INIDOM, PDEDEF, BNDARY, PDEIV, MONITR

3 Description

D03RBF integrates the system of PDEs:

Fjðt; x; y; u; ut; ux; uy; uxx; uxy; uyyÞ ¼ 0; j ¼ 1; 2; . . . ;NPDE; ðx; yÞ 2 �; t0 � t � tout; ð1Þ

where � is an arbitrary rectilinear domain, i.e., a domain bounded by perpendicular straight lines. If the
domain is rectangular then it is recommended that D03RAF is used.

The vector u is the set of solution values

uðx; y; tÞ ¼ ½u1ðx; y; tÞ; . . . ; uNPDEðx; y; tÞ�T ;
and ut denotes partial differentiation with respect to t, and similarly for ux, etc.

The functions Fj must be supplied by the user in a subroutine PDEDEF. Similarly the initial values of the

functions uðx; y; tÞ for ðx; yÞ 2 � must be specified at t ¼ t0 in a subroutine PDEIV.

Note that whilst complete generality is offered by the master equations (1), D03RBF is not appropriate for
all PDEs. In particular, hyperbolic systems should not be solved using this routine. Also, at least one
component of ut must appear in the system of PDEs.

The boundary conditions must be supplied by the user in a subroutine BNDARY in the form

Gjðt; x; y; u; ut; ux; uyÞ ¼ 0 j ¼ 1; 2; . . . ;NPDE; ðx; yÞ 2 @�; t0 � t � tout: ð2Þ

The domain is covered by a uniform coarse base grid specified by the user, and nested finer uniform
subgrids are subsequently created in regions with high spatial activity. The refinement is controlled using a
space monitor which is computed from the current solution and a user-supplied space tolerance TOLS. A
number of optional parameters, e.g., the maximum number of grid levels at any time, and some weighting
factors, can be specified in the arrays OPTI and OPTR. Further details of the refinement strategy can be
found in Section 8.

The system of PDEs and the boundary conditions are discretised in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries), and

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.1

the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF method
with variable step size. The time integration is controlled using a time monitor computed at each grid level
from the current solution and a user-supplied time tolerance TOLT, and some further optional user-
specified weighting factors held in OPTR (see Section 8 for details). The time monitor is used to compute
a new step size, subject to restrictions on the size of the change between steps, and (optional) user-
specified maximum and minimum step sizes held in DT. The step size is adjusted so that the remaining
integration interval is an integer number times 4t. In this way a solution is obtained at t ¼ tout.

A modified Newton method is used to solve the nonlinear equations arising from the time integration. The
user may specify (in OPTI) the maximum number of Newton iterations to be attempted. A Jacobian
matrix is calculated at the beginning of each time step. If the Newton process diverges or the maximum
number of iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the
Newton process is restarted. If convergence is not achieved after the (optional) user-specified maximum
number of new Jacobian evaluations, the time step is retried with 4t ¼ 4t=4. The linear systems arising
from the Newton iteration are solved using a Bi-CGSTAB iterative method, in combination with ILU
preconditioning. The maximum number of iterations can be specified by the user in OPTI.

In order to define the base grid the user must first specify a virtual uniform rectangular grid which contains
the entire base grid. The position of the virtual grid in physical ðx; yÞ space is given by the ðx; yÞ co-
ordinates of its boundaries. The number of points nx and ny in the x and y directions must also be given,

corresponding to the number of columns and rows respectively. This is sufficient to determine precisely
the ðx; yÞ co-ordinates of all virtual grid points. Each virtual grid point is then referred to by integer co-
ordinates ðvx; vyÞ, where ð0; 0Þ corresponds to the lower-left corner and ðnx�1; ny�1Þ corresponds to the

upper-right corner. vx and vy are also referred to as the virtual column and row indices respectively.

The base grid is then specified with respect to the virtual grid, with each base grid point coinciding with a
virtual grid point. Each base grid point must be given an index, starting from 1, and incrementing row-
wise from the leftmost point of the lowest row. Also, each base grid row must be numbered consecutively
from the lowest row in the grid, so that row 1 contains grid point 1.

As an example, consider the domain consisting of the two separate squares shown in Figure 1. The left-
hand diagram shows the virtual grid and its integer co-ordinates (i.e., its column and row indices), and the
right-hand diagram shows the base grid point indices and the base row indices (in brackets).

2

.

...

..

...

...

...

.

.

...

...

...

..

...

32313029

28272625

24232221

20191817

14 161513

1211109

8765

4310

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 1

Hence the base grid point with index 6 say is in base row 2, virtual column 4, and virtual row 1, i.e.,
virtual grid integer co-ordinates (4,1); and the base grid point with index 19 say is in base row 5, virtual
column 2, and virtual row 5, i.e., virtual grid integer co-ordinates (2,5).

The base grid must then be defined in the subroutine INIDOM by specifying the number of base grid rows,
the number of base grid points, the number of boundaries, the number of boundary points, and the
following integer arrays:

LROW contains the base grid indices of the starting points of the base grid rows.

IROW contains the virtual row numbers vy of the base grid rows.

ICOL contains the virtual column numbers vx of the base grid points.

LBND contains the grid indices of the boundary edges (without corners) and corner points.

LLBND contains the starting elements of the boundaries and corners in LBND.

D03RBF NAG Fortran Library Manual

D03RBF.2 [NP3546/20A]

Finally, ILBND contains the types of the boundaries and corners, as follows:

Boundaries:

1 – lower boundary

2 – left boundary

3 – upper boundary

4 – right boundary

External corners (90�):

12 – lower-left corner

23 – upper-left corner

34 – upper-right corner

41 – lower-right corner

Internal corners (270�):

21 – lower-left corner

32 – upper-left corner

43 – upper-right corner

14 – lower-right corner

Figure 2 shows the boundary types of a domain with a hole. Notice the logic behind the labelling of the
corners: each one includes the types of the two adjacent boundary edges, in a clockwise fashion (outside
the domain).

42

1

4

1

3

2

32

21

43

14

3423

4112

3

Figure 2

As an example, consider the domain shown in Figure 3. The left-hand diagram shows the physical domain
and the right-hand diagram shows the base and virtual grids. The numbers outside the base grid are the
indices of the left and rightmost base grid points, and the numbers inside the base grid are the boundary or
corner numbers, indicating the order in which the boundaries are stored in LBND.

24

1012 14

25 28

2726

7

9 23

105

18
4

17

20115 ...

16

22

11

13

8

21

1

4

15

26

37

46

57

68

79

88

97

96

87

78

67

56

45

36

25

14

3

5

2 6

19

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.3

Figure 3

For this example we have

NROWS = 11
NPTS = 105
NBNDS = 28
NBPTS = 72

LROW = (1,4,15,26,37,46,57,68,79,88,97)

IROW = (0,1,2,3,4,5,6,7,8,9,10)

ICOL = (0,1,2,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,9,10,
0,1,2,3,4,5,6,7,8,
0,1,2,3,4,5,6,7,8,
0,1,2,3,4,5,6,7,8)

LBND = (2,
4,15,26,37,46,57,68,79,88,
98,99,100,101,102,103,104,
96,
86,85,84,83,82,
70,59,48,39,28,17,6,
8,9,10,11,12,13,
18,29,40,49,60,
72,73,74,75,76,77,
67,56,45,36,25,
33,32,
42,
52,53,
43,
1,97,105,87,81,3,7,71,78,14,31,51,54,34)

LLBND = (1,2,11,18,19,24,31,37,42,48,53,55,56,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72)

ILBND = (1,2,3,4,1,4,1,2,3,4,3,4,1,2,12,23,34,41,14,41,12,23,34,41,43,14,21,32)

This particular domain is used in the example in Section 9, and data statements are used to define the
above arrays in that example program. For less complicated domains it is simpler to assign the values of
the arrays in do-loops. This also allows flexibility in the number of base grid points.

The routine D03RYF can be called from INIDOM to obtain a simple graphical representation of the base
grid, and to verify the data that the user has specified in INIDOM.

Subgrids are stored internally using the same data structure, and solution information is communicated to
the user in the subroutines PDEIV, PDEDEF and BNDARY in arrays according to the grid index on the
particular level, e.g., XðiÞ and YðiÞ contain the ðx; yÞ co-ordinates of grid point i, and Uði; jÞ contains the
jth solution component uj at grid point i.

The grid data and the solutions at all grid levels are stored in the workspace arrays, along with other
information needed for a restart (i.e., a continuation call). It is not intended that the user extracts the
solution from these arrays, indeed the necessary information regarding these arrays is not provided. The
user-supplied monitor routine MONITR should be used to obtain the solution at particular levels and times.
MONITR is called at the end of every time step, with the last step being identified via the input argument
TLAST. The routine D03RZF should be called from MONITR to obtain grid information at a particular
level.

Further details of the underlying algorithm can be found in Section 8 and in Blom and Verwer (1993) and
Blom et al. (1996) and the references therein.

D03RBF NAG Fortran Library Manual

D03RBF.4 [NP3546/20A]

4 References

Blom J G, Trompert R A and Verwer J G (1996) Algorithm 758. VLUGR2: A vectorizable adaptive grid
solver for PDEs in 2D Trans. Math. Software 22 302–328

Blom J G and Verwer J G (1993) VLUGR2: A vectorized local uniform grid refinement code for PDEs in
2D Report NM-R9306 CWI, Amsterdam

Trompert R A (1993) Local uniform grid refinement and systems of coupled partial differential equations
Appl. Numer. Maths 12 331–355

Trompert R A and Verwer J G (1993) Analysis of the implicit Euler local uniform grid refinement method
SIAM J. Sci. Comput. 14 259–278

5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

Constraint: NPDE � 1.

2: TS – real Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t which has been reached. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – real Input

On entry: the final value of t to which the integration is to be carried out.

4: DT(3) – real array Input/Output

On entry: the initial, minimum and maximum time step sizes respectively. DT(1) specifies the initial
time step size to be used on the first entry, i.e., when IND ¼ 0. If DTð1Þ ¼ 0:0 then the default
value DTð1Þ ¼ 0:01� ðTOUT� TSÞ is used. On subsequent entries (IND ¼ 1), the value of DT(1)
is not referenced.

DT(2) specifies the minimum time step size to be attempted by the integrator. If DTð2Þ ¼ 0:0 the
default value DTð2Þ ¼ 10:0�machine precision is used.

DT(3) specifies the maximum time step size to be attempted by the integrator. If DTð3Þ ¼ 0:0 the
default value DTð3Þ ¼ TOUT� TS is used.

On exit: DT(1) contains the time step size for the next time step. DT(2) and DT(3) are unchanged
or set to their default values if zero on entry.

Constraints: if IND ¼ 1 then DT(1) is unconstrained. Otherwise DTð1Þ � 0 and if DTð1Þ > 0:0
then it must satisfy the constraints:

10:0�machine precision�maxðj TS j; j TOUT jÞ � DTð1Þ � TOUT� TS

DTð2Þ � DTð1Þ � DTð3Þwhere the values of DT(2) and DT(3) will have been reset to their
default values if zero on entry.

DT(2) and DT(3) must satisfy DTðiÞ � 0, i ¼ 2; 3 and DTð2Þ � DTð3Þ for IND ¼ 0 and IND ¼ 1

5: TOLS – real Input

On entry: the space tolerance used in the grid refinement strategy (� in equation (4)). See
Section 8.2.

Constraint: TOLS > 0:0.

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.5

6: TOLT – real Input

On entry: the time tolerance used to determine the time step size (� in equation (7)). See
Section 8.3.

Constraint: TOLT > 0:0.

7: INIDOM – SUBROUTINE, supplied by the user. External Procedure

INIDOM must specify the base grid in terms of the data structure described in Section 3. INIDOM
is not referenced if, on entry, IND ¼ 1. D03RYF can be called from INIDOM to obtain a simple
graphical representation of the base grid, and to verify the data that the user has specified in
INIDOM. D03RBF also checks the validity of the data, but the user is strongly advised to call
D03RYF to ensure that the base grid is exactly as required.

Note: the boundaries of the base grid should consist of as many points as are necessary to employ
second-order space discretization, i.e., a boundary enclosing the internal part of the domain must
include at least 3 grid points including the corners. If Neumann boundary conditions are to be
applied the minimum is 4.

Its specification is:

SUBROUTINE INIDOM(MAXPTS, XMIN, XMAX, YMIN, YMAX, NX, NY, NPTS,
1 NROWS, NBNDS, NBPTS, LROW, IROW, ICOL, LLBND,
2 ILBND, LBND, IERR)

INTEGER MAXPTS, NX, NY, NPTS, NROWS, NBNDS, NBPTS,
1 LROW(*), IROW(*), ICOL(*), LLBND(*), ILBND(*),
2 LBND(*), IERR
real XMIN, XMAX, YMIN, YMAX

1: MAXPTS – INTEGER Input

On entry: the maximum number of base grid points allowed by the available workspace.

2: XMIN – real Output
3: XMAX – real Output

On exit: the extents of the virtual grid in the x-direction, i.e., the x co-ordinates of the left
and right boundaries respectively.

Constraints: XMIN < XMAX and XMAX must be sufficiently distinguishable from
XMIN for the precision of the machine being used.

4: YMIN – real Output
5: YMAX – real Output

On exit: the extents of the virtual grid in the y-direction, i.e., the y co-ordinates of the left
and right boundaries respectively.

Constraints: YMIN < YMAX and YMAX must be sufficiently distinguishable from
YMIN for the precision of the machine being used.

6: NX – INTEGER Output
7: NY – INTEGER Output

On exit: the number of virtual grid points in the x- and y-direction respectively (including
the boundary points).

Constraints: NX and NY � 4.

8: NPTS – INTEGER Output

On exit: the total number of points in the base grid. If the required number of points is
greater than MAXPTS then INIDOM must be exited immediately with IERR set to �1 to
avoid overwriting memory.

D03RBF NAG Fortran Library Manual

D03RBF.6 [NP3546/20A]

Constraints: NPTS � NX� NY and if IERR 6¼ �1 on exit, NPTS � MAXPTS.

9: NROWS – INTEGER Output

On exit: the total number of rows of the virtual grid that contain base grid points. This is
the maximum base row index.

Constraint: 4 � NROWS � NY.

10: NBNDS – INTEGER Output

On exit: the total number of physical boundaries and corners in the base grid.

Constraint: NBNDS � 8.

11: NBPTS – INTEGER Output

On exit: the total number of boundary points in the base grid.

Constraint: 12 � NBPTS < NPTS.

12: LROW(*) – INTEGER array Output

On exit: LROWðiÞ for i ¼ 1; 2; . . . ;NROWS must contain the base grid index of the first
grid point in base grid row i.

Constraints:

1 � LROWðiÞ � NPTS, for i ¼ 1; 2; . . . ;NROWS,
LROWði� 1Þ < LROWðiÞ, for i ¼ 2; 3; . . . ;NROWS.

13: IROW(*) – INTEGER array Output

On exit: IROWðiÞ for i ¼ 1; 2; . . . ;NROWS must contain the virtual row number vy that

corresponds to base grid row i.

Constraints:

0 � IROWðiÞ � NY, for i ¼ 1; 2; . . . ;NROWS,
IROWði� 1Þ < IROWðiÞ, for i ¼ 2; 3; . . . ;NROWS.

14: ICOL(*) – INTEGER array Output

On exit: ICOLðiÞ for i ¼ 1; 2; . . . ;NPTS must contain the virtual column number vx that
contains base grid point i.

Constraint: 0 � ICOLðiÞ � NX, for i ¼ 1; 2; . . . ;NPTS.

15: LLBND(*) – INTEGER array Output

On exit: LLBNDðiÞ, for i ¼ 1; 2; . . . ;NBNDS, must contain the element of LBND
corresponding to the start of the ith boundary or corner.

Note: the order of the boundaries and corners in LLBND must be first all the boundaries
and then all the corners. The end points of a boundary (i.e., the adjacent corner points)
must not be included in the list of points on that boundary. Also, if a corner is shared by
two pairs of physical boundaries then it has two types and must therefore be treated as two
corners.

Constraints:

1 � LLBNDðiÞ � NBPTS, for i ¼ 1; 2; . . . ;NBNDS,
LLBNDði� 1Þ < LLBNDðiÞ, for i ¼ 2; 3; . . . ;NBNDS.

16: ILBND(*) – INTEGER array Output

On exit: ILBNDðiÞ for i ¼ 1; 2; . . . ;NBNDS must contain the type of the ith boundary (or
corner), as given in Section 3.

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.7

Constraint: ILBNDðiÞ must be equal to one of the following: 1, 2, 3, 4, 12, 23, 34, 41, 21,
32, 43 or 14, for i ¼ 1; 2; . . . ;NBNDS.

17: LBND(*) – INTEGER array Output

On exit: LBNDðiÞ for i ¼ 1; 2; . . . ;NBPTS must contain the grid index of the ith
boundary point. The order of the boundaries is as specified in LLBND, but within this
restriction the order of the points in LBND is arbitrary.

Constraint: 1 � LBNDðiÞ � NPTS for i ¼ 1; 2; . . . ;NBPTS.

18: IERR – INTEGER Output

On exit: if the required number of grid points is larger than MAXPTS, IERR must be set
to �1 to force a termination of the integration and an immediate return to the calling
program with IFAIL set to 3. Otherwise, IERR should remain unchanged.

INIDOM must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

8: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Fj, j ¼ 1; 2; . . . ;NPDE, in equation (1) which define the

system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the domain.
Values at points on the boundaries of the domain are ignored and will be overwritten by the
subroutine BNDARY. PDEDEF is called for each subgrid in turn.

Its specification is:

SUBROUTINE PDEDEF(NPTS, NPDE, T, X, Y, U, UT, UX, UY, UXX, UXY, UYY,
1 RES)

INTEGER NPTS, NPDE
real T, X(NPTS), Y(NPTS), U(NPTS,NPDE), UT(NPTS,NPDE),

1 UX(NPTS,NPDE), UY(NPTS,NPDE), UXX(NPTS,NPDE),
2 UXY(NPTS,NPDE), UYY(NPTS,NPDE), RES(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – real Input

On entry: the current value of the independent variable t.

4: X(NPTS) – real array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: Y(NPTS) – real array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: U(NPTS,NPDE) – real array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

7: UT(NPTS,NPDE) – real array Input

On entry: UTði; jÞ contains the value of @u=@t for the jth PDE component at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

D03RBF NAG Fortran Library Manual

D03RBF.8 [NP3546/20A]

8: UX(NPTS,NPDE) – real array Input

On entry: UXði; jÞ contains the value of @u=@x for the jth PDE component at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

9: UY(NPTS,NPDE) – real array Input

On entry: UYði; jÞ contains the value of @u=@y for the jth PDE component at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

10: UXX(NPTS,NPDE) – real array Input

On entry: UXXði; jÞ contains the value of @2u=@x2 for the jth PDE component at the ith
grid point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

11: UXY(NPTS,NPDE) – real array Input

On entry: UXYði; jÞ contains the value of @2u=@x@y for the jth PDE component at the ith
grid point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

12: UYY(NPTS,NPDE) – real array Input

On entry: UYYði; jÞ contains the value of @2u=@y2 for the jth PDE component at the ith
grid point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

13: RES(NPTS,NPDE) – real array Output

On exit: RESði; jÞ must contain the value of Fj for j ¼ 1; 2; . . . ;NPDE, at the ith grid

point for i ¼ 1; 2; . . . ;NPTS, although the residuals at boundary points will be ignored
(and overwritten later on) and so they need not be specified here.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

9: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions Gj, j ¼ 1; 2; . . . ;NPDE, in equation (2) which define the

boundary conditions at all boundary points of the domain. Residuals at interior points must not be
altered by this subroutine.

Its specification is:

SUBROUTINE BNDARY(NPTS, NPDE, T, X, Y, U, UT, UX, UY, NBNDS, NBPTS,
1 LLBND, ILBND, LBND, RES)

INTEGER NPTS, NPDE, NBNDS, NBPTS, LLBND(NBNDS),
1 ILBND(NBNDS), LBND(NBPTS)
real T, X(NPTS), Y(NPTS), U(NPTS,NPDE), UT(NPTS,NPDE),

1 UX(NPTS,NPDE), UY(NPTS,NPDE), RES(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – real Input

On entry: the current value of the independent variable t.

4: X(NPTS) – real array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.9

5: Y(NPTS) – real array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: U(NPTS,NPDE) – real array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

7: UT(NPTS,NPDE) – real array Input

On entry: UTði; jÞ contains the value of @u=@t for the jth PDE component at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

8: UX(NPTS,NPDE) – real array Input

On entry: UXði; jÞ contains the value of @u=@x for the jth PDE component at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

9: UY(NPTS,NPDE) – real array Input

On entry: UYði; jÞ contains the value of @u=@y for the jth PDE component at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

10: NBNDS – INTEGER Input

On entry: the total number of physical boundaries and corners in the grid.

11: NBPTS – INTEGER Input

On entry: the total number of boundary points in the grid.

12: LLBND(NBNDS) – INTEGER array Input

On entry: LLBNDðiÞ for i ¼ 1; 2; . . . ;NBNDS contains the element of LBND
corresponding to the start of the ith boundary (or corner).

13: ILBND(NBNDS) – INTEGER array Input

On entry: ILBNDðiÞ for i ¼ 1; 2; . . . ;NBNDS contains the type of the ith boundary, as
given in Section 3.

14: LBND(NBPTS) – INTEGER array Input

On entry: LBNDðiÞ for i ¼ 1; 2; . . . ;NBPTS contains the grid index of the ith boundary
point, where the order of the boundaries is as specified in LLBND. Hence the ith
boundary point has co-ordinates XðLBNDðiÞÞ and YðLBNDðiÞÞ, and the corresponding
solution values are UðLBNDðiÞ; jÞ, j ¼ 1; 2; . . . ;NPDE.

15: RES(NPTS,NPDE) – real array Output

On exit: RESðLBNDðiÞ; jÞ must contain the value of Gj for j ¼ 1; 2; . . . ;NPDE, at the ith
boundary point for i ¼ 1; 2; . . . ;NBPTS.

Note: elements of RES corresponding to interior points, i.e., points not included in LBND,
must not be altered.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

10: PDEIV – SUBROUTINE, supplied by the user. External Procedure

PDEIV must specify the initial values of the PDE components u at all points in the base grid.
PDEIV is not referenced if, on entry, IND ¼ 1.

D03RBF NAG Fortran Library Manual

D03RBF.10 [NP3546/20A]

Its specification is:

SUBROUTINE PDEIV(NPTS, NPDE, T, X, Y, U)

INTEGER NPTS, NPDE
real T, X(NPTS), Y(NPTS), U(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the base grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – real Input

On entry: the (initial) value of the independent variable t.

4: X(NPTS) – real array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: Y(NPTS) – real array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: U(NPTS,NPDE) – real array Output

On exit: Uði; jÞ must contain the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS, j ¼ 1; 2; . . . ;NPDE.

PDEIV must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

11: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR is called by D03RBF at the end of every successful time step, and may be used to
examine or print the solution or perform other tasks such as error calculations, particularly at the
final time step, indicated by the parameter TLAST.

The input arguments contain information about the grid and solution at all grid levels used.
D03RZF should be called from MONITR in order to extract the number of points and their ðx; yÞ
co-ordinates on a particular grid.

MONITR can also be used to force an immediate tidy termination of the solution process and return
to the calling program.

Its specification is:

SUBROUTINE MONITR(NPDE, T, DT, DTNEW, TLAST, NLEV, XMIN, YMIN, DXB,
1 DYB, LGRID, ISTRUC, LSOL, SOL, IERR)

INTEGER NPDE, NLEV, LGRID(*), ISTRUC(*), LSOL(NLEV), IERR
real T, DT, DTNEW, XMIN, YMIN, DXB, DYB, SOL(*)
LOGICAL TLAST

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.11

3: DT – real Input

On entry: the current time step size DT, i.e., the time step size used for the integration step
just completed.

4: DTNEW – real Input

On entry: the time step size that will be used for the next time step.

5: TLAST – LOGICAL Input

On entry: indicates if intermediate or final time step. TLAST ¼ :FALSE: for an
intermediate step, TLAST ¼ :TRUE: for the last call to MONITR before returning to the
user’s program.

6: NLEV – INTEGER Input

On entry: the number of grid levels used at time T.

7: XMIN – real Input
8: YMIN – real Input

On entry: the ðx; yÞ co-ordinates of the lower-left corner of the virtual grid.

9: DXB – real Input
10: DYB – real Input

On entry: the sizes of the base grid spacing in the x- and y-direction respectively.

11: LGRID(*) – INTEGER array Input

On entry: LGRID contains pointers to the start of the grid structures in ISTRUC, and must
be passed unchanged to D03RZF in order to extract the grid information.

12: ISTRUC(*) – INTEGER array Input

On entry: ISTRUC contains the grid structures for each grid level and must be passed
unchanged to D03RZF in order to extract the grid information.

13: LSOL(NLEV) – INTEGER array Input

On entry: LSOLðlÞ contains the pointer to the solution in SOL at grid level l and time T.
(LSOLðlÞ actually contains the array index immediately preceding the start of the solution
in SOL. See below.)

14: SOL(*) – real array Input

On entry: SOL contains the solution u at time T for each grid level l in turn, positioned
according to LSOL. More precisely

Uði; jÞ ¼ SOLðLSOLðlÞ þ ðj� 1Þ � nl þ iÞ
represents the jth component of the solution at the ith grid point in the lth level, for
i ¼ 1; . . . ; nl, j ¼ 1; . . . ;NPDE, l ¼ 1; . . . ;NLEV, where nl is the number of grid points
at level l (obtainable by a call to D03RZF).

15: IERR – INTEGER Output

On exit: IERR should be set to 1 to force a termination of the integration and an
immediate return to the calling program with IFAIL set to 4. IERR should remain
unchanged otherwise.

MONITR must be declared as EXTERNAL in the (sub)program from which D03RBF is called.
Parameters denoted as Input must not be changed by this procedure.

D03RBF NAG Fortran Library Manual

D03RBF.12 [NP3546/20A]

12: OPTI(4) – INTEGER array Input

On entry: OPTI may be set to control various options available in the integrator. If OPTIð1Þ ¼ 0
then all the default options are employed.

If OPTIð1Þ > 0 then the default value of OPTIðiÞ for i ¼ 2; 3; 4, can be obtained by setting
OPTIðiÞ ¼ 0.

OPTI(1) specifies the maximum number of grid levels allowed (including the base grid).
OPTIð1Þ � 0. The default value is OPTIð1Þ ¼ 3.

OPTI(2) specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. OPTIð2Þ � 0. The default value is OPTIð2Þ ¼ 2.

OPTI(3) specifies the maximum number of Newton iterations in each nonlinear equations solution.
OPTIð3Þ � 0. The default value is OPTIð3Þ ¼ 10.

OPTI(4) specifies the maximum number of iterations in each linear equations solution.
OPTIð4Þ � 0. The default value is OPTIð4Þ ¼ 100.

Constraint: OPTIð1Þ � 0 and if OPTIð1Þ > 0 then OPTIðiÞ � 0 for i ¼ 2,3,4.

13: OPTR(3,NPDE) – real array Input

On entry: OPTR may be used to specify the optional vectors umax, ws and wt in the space and time
monitors (see Section 8).

If an optional vector is not required then all its components should be set to 1.0.

OPTRð1; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies umax
j , the approximate maximum absolute value of the

jth component of u, as used in (4) and (7). OPTRð1; jÞ > 0:0 for j ¼ 1; 2; . . . ;NPDE.

OPTRð2; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies ws
j, the weighting factors used in the space monitor

(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
OPTRð2; jÞ � 0:0 for j ¼ 1; 2; . . . ;NPDE.

OPTRð3; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies wt
j, the weighting factors used in the time monitor

(see (6)) to indicate the relative importance of the jth component of u on the time monitor.
OPTRð3; jÞ � 0:0 for j ¼ 1; 2; . . . ;NPDE.

Constraint: OPTRð1; jÞ > 0:0 for j ¼ 1; 2; . . . ;NPDE and OPTRði; jÞ � 0:0 for i ¼ 2; 3 and
j ¼ 1; 2; . . . ;NPDE.

14: RWK(LENRWK) – real array Workspace
15: LENRWK – INTEGER Input

On entry: the dimension of the array RWK as declared in the (sub)program from which D03RBF is
called.

The required value of LENRWK can not be determined exactly in advance, but a suggested value is

LENRWK ¼ MAXPTS� NPDE� ð5� lþ 18� NPDEþ 9Þ þ 2�MAXPTS,

where l ¼ OPTIð1Þ if OPTIð1Þ 6¼ 0 and l ¼ 3 otherwise, and MAXPTS is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be too
small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Note: the size of LENRWK can not be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

16: IWK(LENIWK) – INTEGER array Input/Output

On entry: if IND ¼ 0, IWK need not be set. Otherwise IWK must remain unchanged from a
previous call to D03RBF.

On exit: the following components of the array IW concern the efficiency of the integration.

IWK(1) contains the number of steps taken in time;

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.13

IWK(2) contains the number of rejected time steps;

IWKð2þ lÞ contains the total number of residual evaluations performed (i.e., the number of
times PDEDEF was called) at grid level l;

IWKð2þmþ lÞ contains the total number of Jacobian evaluations performed at grid level l;

IWKð2þ 2�mþ lÞ contains the total number of Newton iterations performed at grid level l;

IWKð2þ 3�mþ lÞ contains the total number of linear solver iterations performed at grid
level l;

IWKð2þ 4�mþ lÞ contains the maximum number of Newton iterations performed at any
one time step at grid level l;

IWKð2þ 5�mþ lÞ contains the maximum number of linear solver iterations performed at
any one time step at grid level l;

for l ¼ 1; 2; . . . ; nl, where nl is the number of levels used and m ¼ OPTIð1Þ if OPTIð1Þ > 0 and
m ¼ 3 otherwise.

Note: the total and maximum numbers are cumulative over all calls to D03RBF. If the specified
maximum number of Newton or linear solver iterations is exceeded at any stage, then the
maximums above are set to the specified maximum plus one.

17: LENIWK – INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which D03RBF is
called.

The required value of LENIWK can not be determined exactly in advance, but a suggested value is

LENIWK ¼ MAXPTS� ð14þ 5�mÞ þ 7�mþ 2,

where MAXPTS is the expected maximum number of grid points at any one level and
m ¼ OPTIð1Þ if OPTIð1Þ > 0 and m ¼ 3 otherwise. If during the execution the supplied value is
found to be too small then the routine returns with IFAIL ¼ 3 and an estimated required size is
printed on the current error message unit (see X04AAF).

Note: the size of LENIWK can not be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

18: LWK(LENLWK) – LOGICAL array Workspace
19: LENLWK – INTEGER Input

On entry: the dimension of the array LWK as declared in the (sub)program from which D03RBF is
called.

The required value of LENLWK can not be determined exactly in advance, but a suggested value is

LENLWK ¼ MAXPTSþ 1,

where MAXPTS is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the routine returns with IFAIL ¼ 3 and
an estimated required size is printed on the current error message unit (see X04AAF).

Note: the size of LENLWK can not be checked upon initial entry to D03RBF since the number of
grid points on the base grid is not known.

20: ITRACE – INTEGER Input

On entry: the level of trace information required from D03RBF. ITRACE may take the value �1,
0, 1, 2, or 3. If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is
assumed. If ITRACE ¼ �1, no output is generated. If ITRACE ¼ 0, only warning messages are
printed, and if ITRACE > 0, then output from the underlying solver is printed on the current
advisory message unit (see X04ABF). This output contains details of the time integration, the
nonlinear iteration and the linear solver. The advisory messages are given in greater detail as

D03RBF NAG Fortran Library Manual

D03RBF.14 [NP3546/20A]

ITRACE increases. Setting ITRACE ¼ 1 allows the user to monitor the progress of the integration
without possibly excessive information.

21: IND – INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND ¼ 0

starts the integration in time.

IND ¼ 1

continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RBF: TOUT, DT(2), DT(3), TOLS,
TOLT, OPTI, OPTR, ITRACE and IFAIL.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

22: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPDE < 1,
or TOUT � TS,
or TOUT is too close to TS,
or IND ¼ 0 and DTð1Þ < 0:0,
or DTðiÞ < 0:0 for i ¼ 2 or 3,
or DTð2Þ > DTð3Þ,
or IND ¼ 0 and

0:0 < DTð1Þ < 10�machine precision�maxðj TS j; j TOUT jÞ,
or IND ¼ 0 and DTð1Þ > TOUT� TS,
or IND ¼ 0 and DTð1Þ < DTð2ÞorDTð1Þ > DTð3Þ,
or TOLS or TOLT � 0:0,
or OPTIð1Þ < 0,
or OPTIð1Þ > 0 and OPTIðjÞ < 0 for j ¼ 2, 3 or 4,
or OPTRð1; jÞ � 0:0 for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð2; jÞ < 0:0 for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð3; jÞ < 0:0 for some j ¼ 1; 2; . . . ;NPDE,
or IND 6¼ 0 or 1,
or IND ¼ 1 on initial entry to D03RBF.

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.15

IFAIL ¼ 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., TOLT is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations is
too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.

Setting ITRACE to a higher value may provide further information.

In the latter two cases the user is advised to check their problem formulation in PDEDEF and/or
BNDARY, and the initial values in PDEIV if appropriate.

IFAIL ¼ 3

One or more of the workspace arrays is too small for the required number of grid points. At the
initial time step this error may result from either the user setting IERR to �1 in INIDOM, or the
internal check on the number of grid points following the call to INIDOM. An estimate of the
required sizes for the current stage is output, but more space may be required at a later stage.

IFAIL ¼ 4

IERR was set to 1 in the user-supplied subroutine MONITR, forcing control to be passed back to
calling program. Integration was successful as far as T ¼ TS.

IFAIL ¼ 5

The integration has been completed but the maximum number of levels specified in OPTI(1) was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of OPTI(1) or decrease the value of
TOLS.

IFAIL ¼ 6

One or more of the output arguments of the user-suppled subroutine INIDOM was incorrectly
specified, i.e.,

On entry, XMIN � XMAX,
or XMAX too close to XMIN,
or YMIN � YMAX,
or YMAX too close to YMIN,
or NX or NY < 4,
or NROWS < 4,
or NROWS > NY,
or NPTS > NX� NY,
or NBNDS < 8,
or NBPTS < 12,
or NBPTS � NPTS,
or LROWðiÞ < 1 or LROWðiÞ > NPTS for some i ¼ 1; 2; . . . ;NROWS,
or LROWðiÞ � LROWði� 1Þ for some i ¼ 2; 3; . . . ;NROWS,
or IROWðiÞ < 0 or IROWðiÞ > NY for some i ¼ 1; 2; . . . ;NROWS,
or IROWðiÞ � IROWði� 1Þ for some i ¼ 2; 3; . . . ;NROWS,
or ICOLðiÞ < 0 or ICOLðiÞ > NX for some i ¼ 1; 2; . . . ;NPTS,
or LLBNDðiÞ < 1 or LLBNDðiÞ > NBPTS for some i ¼ 1; 2; . . . ;NBNDS,
or LLBNDðiÞ � LLBNDði� 1Þ for some i ¼ 2; 3; . . . ;NBNDS,
or ILBNDðiÞ 6¼ 1, 2, 3, 4, 12, 23, 34, 41, 21, 32, 43 or 14, for some i ¼ 1; 2; . . . ;NBNDS,
or LBNDðiÞ < 1 or LBNDðiÞ > NPTS for some i ¼ 1; 2; . . . ;NBPTS.

D03RBF NAG Fortran Library Manual

D03RBF.16 [NP3546/20A]

7 Accuracy

There are three sources of error in the algorithm: space and time discretisation, and interpolation (linear)
between grid levels. The space and time discretisation errors are controlled separately using the parameters
TOLS and TOLT described in the following section, and the user should test the effects of varying these
parameters. Interpolation errors are generally implicitly controlled by the refinement criterion since in
areas where interpolation errors are potentially large, the space monitor will also be large. It can be shown
that the global spatial accuracy is comparable to that which would be obtained on a uniform grid of the
finest grid size. A full error analysis can be found in Trompert and Verwer (1993).

8 Further Comments

8.1 Algorithm Outline

The local uniform grid refinement method is summarised as follows.

1. Initialise the course base grid, an initial solution and an initial time step.

2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been reached:

(a) Determine new finer grid at forward time level.

(b) Get solution values at previous time level(s) on new grid.

(c) Interpolate internal boundary values from old grid at forward time.

(d) Get initial values for the Newton process at forward time.

(e) Goto 2.

4. Update the coarser grid solution using the finer grid values.

5. Estimate error in time integration. If time error is acceptable advance time level.

6. Determine new step size then goto 2 with coarse base as current grid.

8.2 Refinement Strategy

For each grid point i a space monitor �s
i is determined by

�s
i ¼ max

j¼1;NPDE
f�jðj 4x2 @2

@x2
ujðxi; yi; tÞ j þ j 4y2 @2

@y2
ujðxi; yi; tÞ jÞg; ð3Þ

where 4x and 4y are the grid widths in the x and y directions; and xi, yi are the ðx; yÞ co-ordinates at
grid point i. The parameter �j is obtained from

�j ¼
ws

j

umax
j �

; ð4Þ

where � is the user-supplied space tolerance; ws
j is a weighting factor for the relative importance of the jth

PDE component on the space monitor; and umax
j is the approximate maximum absolute value of the jth

component. A value for � must be supplied by the user. Values for ws
j and umax

j must also be supplied but

may be set to the values 1.0 if little information about the solution is known.

A new level of refinement is created if

max
i
f�s

ig > 0:9 or 1:0; ð5Þ

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid levels
between time steps. If (5) is satisfied then all grid points for which �s

i > 0:25 are flagged and surrounding
cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed first
and new finer grids are then created based on the new solution. Hence derefinement occurs implicitly. See
Section 8.1.

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.17

8.3 Time Integration

The time integration is controlled using a time monitor calculated at each level l up to the maximum level
used, given by

�t
l ¼

ffi
1

N

XNPDE
j¼1

wt
j

XNGPTSðlÞ

i¼1

ð4t

�ij

utðxi; yi; tÞÞ2
vuut ð6Þ

where NGPTSðlÞ is the total number of points on grid level l; N ¼ NGPTSðlÞ � NPDE; 4t is the current

time step; ut is the time derivative of u which is approximated by first-order finite differences; wt
j is the

time equivalent of the space weighting factor ws
j; and �ij is given by

�ij ¼ �ð
umax
j

100
þ j uðxi; yi; tÞ jÞ ð7Þ

where umax
j is as before, and � is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

max
l
f�t

lg > 1:0: ð8Þ

9 Example

This example is taken from Blom and Verwer (1993) and is the two dimensional Burgers’ system

@u

@t
¼ �u

@u

@x
� v

@u

@y
þ �

@2u

@x2
þ @2u

@y2

� �
;

@v

@t
¼ �u

@v

@x
� v

@v

@y
þ �

@2v

@x2
þ @2v

@y2

� �
;

with � ¼ 10�3 on the domain given in Figure 3. Dirichlet boundary conditions are used on all boundaries
using the exact solution

u ¼ 3
4
� 1

4ð1þ exp ðð�4xþ 4y� tÞ=ð32�ÞÞÞ ;

v ¼ 3
4
þ 1

4ð1þ exp ðð�4xþ 4y� tÞ=ð32�ÞÞÞ :

The solution contains a wave front at y ¼ xþ 0:25t which propagates in a direction perpendicular to the

front with speed
ffiffiffi
2

p
=8.

9.1 Program Text

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

* D03RBF Example Program Text
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER MXLEV, NPDE, NPTS
PARAMETER (MXLEV=5,NPDE=2,NPTS=3000)
INTEGER LENIWK, LENRWK, LENLWK
PARAMETER (LENIWK=NPTS*(5*MXLEV+14)+2+7*MXLEV,

+ LENRWK=NPTS*NPDE*(5*MXLEV+9+18*NPDE)+2*NPTS,
+ LENLWK=2*NPTS)

* .. Scalars in Common ..
INTEGER IOUT

* .. Arrays in Common ..
real TWANT(2)

* .. Local Scalars ..
real TOLS, TOLT, TOUT, TS

D03RBF NAG Fortran Library Manual

D03RBF.18 [NP3546/20A]

INTEGER I, IFAIL, IND, ITRACE, J, MAXLEV
* .. Local Arrays ..

real DT(3), OPTR(3,NPDE), RWK(LENRWK)
INTEGER IWK(LENIWK), OPTI(4)
LOGICAL LWK(LENLWK)

* .. External Subroutines ..
EXTERNAL BNDRY, D03RBF, INIDM, MONIT, PDEF, PDEIV

* .. Common blocks ..
COMMON /OTIME/TWANT, IOUT

* .. Save statement ..
SAVE /OTIME/

* .. Executable Statements ..
WRITE (NOUT,*) ’D03RBF Example Program Results’

*
IND = 0
ITRACE = 0
TS = 0.0e0
TWANT(1) = 0.25e0
TWANT(2) = 1.0e0
DT(1) = 0.001e0
DT(2) = 1.0e-7
DT(3) = 0.0e0
TOLS = 0.1e0
TOLT = 0.05e0
OPTI(1) = 5
MAXLEV = OPTI(1)
DO 20 I = 2, 4

OPTI(I) = 0
20 CONTINUE

DO 60 J = 1, NPDE
DO 40 I = 1, 3

OPTR(I,J) = 1.0e0
40 CONTINUE
60 CONTINUE

*
* Call main routine
*

DO 120 IOUT = 1, 2
IFAIL = -1
TOUT = TWANT(IOUT)
CALL D03RBF(NPDE,TS,TOUT,DT,TOLS,TOLT,INIDM,PDEF,BNDRY,PDEIV,

+ MONIT,OPTI,OPTR,RWK,LENRWK,IWK,LENIWK,LWK,LENLWK,
+ ITRACE,IND,IFAIL)

*
* Print statistics
*

WRITE (NOUT,’(’’ Statistics:’’)’)
WRITE (NOUT,’(’’ Time = ’’,F8.4)’) TS
WRITE (NOUT,’(’’ Total number of accepted timesteps =’’, I5)’)

+ IWK(1)
WRITE (NOUT,’(’’ Total number of rejected timesteps =’’, I5)’)

+ IWK(2)
WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ T o t a l n u m b e r o f ’’)’)
WRITE (NOUT,

+ ’(’’ Residual Jacobian Newton ’’ , ’’ Lin sys’’)’
+)

WRITE (NOUT,
+ ’(’’ evals evals iters ’’ , ’’ iters’’)’
+)

WRITE (NOUT,’(’’ At level ’’)’)
MAXLEV = OPTI(1)
DO 80 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,4I10)’) J, IWK(J+2),
+ IWK(J+2+MAXLEV), IWK(J+2+2*MAXLEV), IWK(J+2+3*MAXLEV)

*
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ M a x i m u m n u m b e r ’’, ’’ o f’’)’)

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.19

WRITE (NOUT,
+ ’(’’ Newton iters Lin sys iters ’’)’)

WRITE (NOUT,’(’’ At level ’’)’)
DO 100 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,2I14)’) J,
+ IWK(J+2+4*MAXLEV), IWK(J+2+5*MAXLEV)

100 CONTINUE
WRITE (NOUT,*)

*
120 CONTINUE

*
STOP
END

*
SUBROUTINE INIDM(MAXPTS,XMIN,XMAX,YMIN,YMAX,NX,NY,NPTS,NROWS,

+ NBNDS,NBPTS,LROW,IROW,ICOL,LLBND,ILBND,LBND,IERR)
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real XMAX, XMIN, YMAX, YMIN
INTEGER IERR, MAXPTS, NBNDS, NBPTS, NPTS, NROWS, NX, NY

* .. Array Arguments ..
INTEGER ICOL(*), ILBND(*), IROW(*), LBND(*), LLBND(*),

+ LROW(*)
* .. Local Scalars ..

INTEGER I, IFAIL, J, LENIWK
* .. Local Arrays ..

INTEGER ICOLD(105), ILBNDD(28), IROWD(11), IWK(122),
+ LBNDD(72), LLBNDD(28), LROWD(11)
CHARACTER*33 PGRID(11)

* .. External Subroutines ..
EXTERNAL D03RYF

* .. Data statements ..
DATA ICOLD/0, 1, 2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 8, 9, 10, 0,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6,
+ 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8/
DATA ILBNDD/1, 2, 3, 4, 1, 4, 1, 2, 3, 4, 3, 4, 1, 2,

+ 12, 23, 34, 41, 14, 41, 12, 23, 34, 41, 43, 14,
+ 21, 32/
DATA IROWD/0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
DATA LBNDD/2, 4, 15, 26, 37, 46, 57, 68, 79, 88, 98,

+ 99, 100, 101, 102, 103, 104, 96, 86, 85, 84, 83,
+ 82, 70, 59, 48, 39, 28, 17, 6, 8, 9, 10, 11, 12,
+ 13, 18, 29, 40, 49, 60, 72, 73, 74, 75, 76, 77,
+ 67, 56, 45, 36, 25, 33, 32, 42, 52, 53, 43, 1,
+ 97, 105, 87, 81, 3, 7, 71, 78, 14, 31, 51, 54,
+ 34/
DATA LLBNDD/1, 2, 11, 18, 19, 24, 31, 37, 42, 48, 53,

+ 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
+ 68, 69, 70, 71, 72/
DATA LROWD/1, 4, 15, 26, 37, 46, 57, 68, 79, 88, 97/

* .. Executable Statements ..
NX = 11
NY = 11

*
* Check MAXPTS against rough estimate of NPTS
*

NPTS = NX*NY
IF (MAXPTS.LT.NPTS) THEN

IERR = -1
RETURN

END IF
*

XMIN = 0.0e0
YMIN = 0.0e0
XMAX = 1.0e0

D03RBF NAG Fortran Library Manual

D03RBF.20 [NP3546/20A]

YMAX = 1.0e0
*

NROWS = 11
NPTS = 105
NBNDS = 28
NBPTS = 72

*
DO 20 I = 1, NROWS

LROW(I) = LROWD(I)
IROW(I) = IROWD(I)

20 CONTINUE
*

DO 40 I = 1, NBNDS
LLBND(I) = LLBNDD(I)
ILBND(I) = ILBNDD(I)

40 CONTINUE
*

DO 60 I = 1, NBPTS
LBND(I) = LBNDD(I)

60 CONTINUE
*

DO 80 I = 1, NPTS
ICOL(I) = ICOLD(I)

80 CONTINUE
*

WRITE (NOUT,*) ’Base grid:’
WRITE (NOUT,*)
LENIWK = 122
IFAIL = -1

*
CALL D03RYF(NX,NY,NPTS,NROWS,NBNDS,NBPTS,LROW,IROW,ICOL,LLBND,

+ ILBND,LBND,IWK,LENIWK,PGRID,IFAIL)
*

IF (IFAIL.EQ.0) THEN
WRITE (NOUT,*) ’ ’
DO 100 J = 1, NY

WRITE (NOUT,*) PGRID(J)
WRITE (NOUT,*) ’ ’

100 CONTINUE
WRITE (NOUT,*) ’ ’

END IF
*

RETURN
END

*
SUBROUTINE PDEIV(NPTS,NPDE,T,X,Y,U)

* .. Parameters ..
real EPS
PARAMETER (EPS=1e-3)

* .. Scalar Arguments ..
real T
INTEGER NPDE, NPTS

* .. Array Arguments ..
real U(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Local Scalars ..
real A
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
DO 20 I = 1, NPTS

A = (-4.0e0*X(I)+4.0e0*Y(I)-T)/(32.0e0*EPS)
IF (A.LE.0.0e0) THEN

U(I,1) = 0.75e0 - 0.25e0/(1.0e0+EXP(A))
U(I,2) = 0.75e0 + 0.25e0/(1.0e0+EXP(A))

ELSE
U(I,1) = 0.75e0 - 0.25e0*EXP(-A)/(EXP(-A)+1.0e0)
U(I,2) = 0.75e0 + 0.25e0*EXP(-A)/(EXP(-A)+1.0e0)

END IF
20 CONTINUE

*

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.21

RETURN
END

*
SUBROUTINE PDEF(NPTS,NPDE,T,X,Y,U,UT,UX,UY,UXX,UXY,UYY,RES)

* .. Parameters ..
real EPS
PARAMETER (EPS=1e-3)

* .. Scalar Arguments ..
real T
INTEGER NPDE, NPTS

* .. Array Arguments ..
real RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UXX(NPTS,NPDE), UXY(NPTS,NPDE),
+ UY(NPTS,NPDE), UYY(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
DO 20 I = 1, NPTS

RES(I,1) = UT(I,1) - (-U(I,1)*UX(I,1)-U(I,2)*UY(I,1)
+ +EPS*(UXX(I,1)+UYY(I,1)))

RES(I,2) = UT(I,2) - (-U(I,1)*UX(I,2)-U(I,2)*UY(I,2)
+ +EPS*(UXX(I,2)+UYY(I,2)))

20 CONTINUE

RETURN
END
SUBROUTINE BNDRY(NPTS,NPDE,T,X,Y,U,UT,UX,UY,NBNDS,NBPTS,LLBND,

+ ILBND,LBND,RES)
* .. Parameters ..

real EPS
PARAMETER (EPS=1e-3)

* .. Scalar Arguments ..
real T
INTEGER NBNDS, NBPTS, NPDE, NPTS

* .. Array Arguments ..
real RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UY(NPTS,NPDE), X(NPTS), Y(NPTS)
INTEGER ILBND(NBNDS), LBND(NBPTS), LLBND(NBNDS)

* .. Local Scalars ..
real A
INTEGER I, K

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
DO 20 K = LLBND(1), NBPTS

I = LBND(K)
A = (-4.0e0*X(I)+4.0e0*Y(I)-T)/(32.0e0*EPS)
IF (A.LE.0.0e0) THEN

RES(I,1) = U(I,1) - (0.75e0-0.25e0/(1.0e0+EXP(A)))
RES(I,2) = U(I,2) - (0.75e0+0.25e0/(1.0e0+EXP(A)))

ELSE
RES(I,1) = U(I,1) - (0.75e0-0.25e0*EXP(-A)/(EXP(-A)+1.0e0))
RES(I,2) = U(I,2) - (0.75e0+0.25e0*EXP(-A)/(EXP(-A)+1.0e0))

END IF
20 CONTINUE

*
RETURN
END

*
SUBROUTINE MONIT(NPDE,T,DT,DTNEW,TLAST,NLEV,XMIN,YMIN,DXB,DYB,

+ LGRID,ISTRUC,LSOL,SOL,IERR)
* .. Parameters ..

INTEGER MAXPTS, NOUT
PARAMETER (MAXPTS=2500,NOUT=6)

* .. Scalar Arguments ..
real DT, DTNEW, DXB, DYB, T, XMIN, YMIN
INTEGER IERR, NLEV, NPDE
LOGICAL TLAST

* .. Array Arguments ..
real SOL(*)
INTEGER ISTRUC(*), LGRID(*), LSOL(NLEV)

D03RBF NAG Fortran Library Manual

D03RBF.22 [NP3546/20A]

* .. Scalars in Common ..
INTEGER IOUT

* .. Arrays in Common ..
real TWANT(2)

* .. Local Scalars ..
INTEGER IFAIL, IPSOL, IPT, LEVEL, NPTS

* .. Local Arrays ..
real UEX(105,2), X(MAXPTS), Y(MAXPTS)

* .. External Subroutines ..
EXTERNAL D03RZF, PDEIV

* .. Common blocks ..
COMMON /OTIME/TWANT, IOUT

* .. Save statement ..
SAVE /OTIME/

* .. Executable Statements ..
*

IFAIL = -1
IF (TLAST) THEN

DO 40 LEVEL = 1, NLEV
IPSOL = LSOL(LEVEL)

*
* Get grid information
*

CALL D03RZF(LEVEL,NLEV,XMIN,YMIN,DXB,DYB,LGRID,ISTRUC,NPTS,
+ X,Y,MAXPTS,IFAIL)

IF (IFAIL.NE.0) THEN
IERR = 1
RETURN

END IF
*

IF (IOUT.EQ.2 .AND. LEVEL.EQ.1) THEN
*
* Get exact solution
*

CALL PDEIV(NPTS,NPDE,T,X,Y,UEX)
WRITE (NOUT,*)
WRITE (NOUT,

+’(’’ Solution at every 2nd grid point ’’, ’’in level 1 at time ’’,
+ F8.4,’’:’’)’) T

WRITE (NOUT,*)
WRITE (NOUT,

+’(7X,’’x’’,10X,’’y’’,8X,’’approx u’’,5X,’’exact u’’,4X,
+ ’’approx v’’,4X,’’exact v’’)’)

WRITE (NOUT,*)
IPSOL = LSOL(LEVEL)
DO 20 IPT = 1, NPTS, 2

WRITE (NOUT,’(6(1X,D11.4))’) X(IPT), Y(IPT),
+ SOL(IPSOL+IPT), UEX(IPT,1), SOL(IPSOL+NPTS+IPT),
+ UEX(IPT,2)

20 CONTINUE
WRITE (NOUT,*)

END IF
*

40 CONTINUE
END IF

*
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03RBF Example Program Results
Base grid:

23 3 3 3 3 3 3 3 34 XX XX

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.23

2 4 XX XX

2 .. 14 1 1 1 1 1 41 XX XX

2 .. 4 23 3 3 3 3 3 3 34

2 .. 4 2 4

2 .. 4 2 .. 14 1 1 21 .. 4

2 .. 4 2 .. 4 XX XX 2 .. 4

2 .. 4 2 .. 43 3 3 32 .. 4

2 .. 4 2 4

2 .. 4 12 1 1 1 1 1 1 41

12 1 41 XX XX XX XX XX XX XX XX

Statistics:
Time = 0.2500
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 196 14 28 14
2 196 14 28 22
3 196 14 28 25
4 196 14 28 31
5 141 10 21 29

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 1
2 2 1
3 2 1
4 2 2
5 3 2

Solution at every 2nd grid point in level 1 at time 1.0000:

x y approx u exact u approx v exact v

0.0000E+00 0.0000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.2000E+00 0.0000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.1000E+00 0.5002E+00 0.5000E+00 0.9998E+00 0.1000E+01
0.3000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.5000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.7000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.1000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.0000E+00 0.2000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.2000E+00 0.2000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.4000E+00 0.2000E+00 0.5001E+00 0.5000E+00 0.9999E+00 0.1000E+01
0.6000E+00 0.2000E+00 0.4999E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.8000E+00 0.2000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.2000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.3000E+00 0.5000E+00 0.5005E+00 0.1000E+01 0.9995E+00
0.3000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.5000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.7000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.3000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.0000E+00 0.4000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.4000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00

D03RBF NAG Fortran Library Manual

D03RBF.24 [NP3546/20A]

0.4000E+00 0.4000E+00 0.5002E+00 0.5000E+00 0.9998E+00 0.1000E+01
0.8000E+00 0.4000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.4000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.5000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.3000E+00 0.5000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.5000E+00 0.5000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.7000E+00 0.5000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.5000E+00 0.5001E+00 0.5000E+00 0.9999E+00 0.1000E+01
0.0000E+00 0.6000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.6000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.4000E+00 0.6000E+00 0.5000E+00 0.5005E+00 0.1000E+01 0.9995E+00
0.6000E+00 0.6000E+00 0.4999E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.8000E+00 0.6000E+00 0.4998E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.6000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.7000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.3000E+00 0.7000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.5000E+00 0.7000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.7000E+00 0.7000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.9000E+00 0.7000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.0000E+00 0.8000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.8000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.4000E+00 0.8000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.6000E+00 0.8000E+00 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00
0.8000E+00 0.8000E+00 0.5000E+00 0.5000E+00 0.1000E+01 0.1000E+01
0.1000E+00 0.9000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.3000E+00 0.9000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.5000E+00 0.9000E+00 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.7000E+00 0.9000E+00 0.4999E+00 0.5005E+00 0.1000E+01 0.9995E+00
0.0000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.2000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.4000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.6000E+00 0.1000E+01 0.7500E+00 0.7500E+00 0.7500E+00 0.7500E+00
0.8000E+00 0.1000E+01 0.5005E+00 0.5005E+00 0.9995E+00 0.9995E+00

Statistics:
Time = 1.0000
Total number of accepted timesteps = 45
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 630 45 90 45
2 630 45 90 78
3 630 45 90 87
4 630 45 90 124
5 575 41 83 122

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 1
2 2 1
3 2 1
4 2 2
5 3 2

D03 – Partial Differential Equations D03RBF

[NP3546/20A] D03RBF.25 (last)

	D03RBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NPDE
	TS
	TOUT
	DT
	TOLS
	TOLT
	INIDOM
	MAXPTS
	XMIN
	XMAX
	YMIN
	YMAX
	NX
	NY
	NPTS
	NROWS
	NBNDS
	NBPTS
	LROW
	IROW
	ICOL
	LLBND
	ILBND
	LBND
	IERR

	PDEDEF
	NPTS
	NPDE
	T
	X
	Y
	U
	UT
	UX
	UY
	UXX
	UXY
	UYY
	RES

	BNDARY
	NPTS
	NPDE
	T
	X
	Y
	U
	UT
	UX
	UY
	NBNDS
	NBPTS
	LLBND
	ILBND
	LBND
	RES

	PDEIV
	NPTS
	NPDE
	T
	X
	Y
	U

	MONITR
	NPDE
	T
	DT
	DTNEW
	TLAST
	NLEV
	XMIN
	YMIN
	DXB
	DYB
	LGRID
	ISTRUC
	LSOL
	SOL
	IERR

	OPTI
	OPTR
	RWK
	LENRWK
	IWK
	LENIWK
	LWK
	LENLWK
	ITRACE
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6

	7 Accuracy
	8 Further Comments
	8.1 Algorithm Outline
	8.2 Refinement Strategy
	8.3 Time Integration

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

